Quantum Nonlocality with Arbitrary Limited Detection Efficiency.
نویسندگان
چکیده
The demonstration and use of nonlocality, as defined by Bell's theorem, rely strongly on dealing with nondetection events due to losses and detectors'inefficiencies. Otherwise, the so-called detection loophole could be exploited. The only way to avoid this is to have detection efficiencies that are above a certain threshold. We introduce the intermediate assumption of limited detection efficiency, that is, in each run of the experiment, the overall detection efficiency is lower bounded by η(min)>0. Hence, in an adversarial scenario, the adversaries have arbitrary large but not full control over the inefficiencies. We analyze the set of possible correlations that satisfy limited detection locality and show that they necessarily satisfy some linear Bell-like inequalities. We prove that quantum theory predicts the violation of one of these inequalities for all η(min)>0. Hence, nonlocality can be demonstrated with arbitrarily small limited detection efficiencies. We validate this assumption experimentally via a twin-photon implementation in which two users are provided with one photon each out of a partially entangled pair. We exploit on each side a passive switch followed by two measurement devices with fixed settings. Assuming the switches are not fully controlled by an adversary, nor by hypothetical local variables, we reveal the nonlocality of the established correlations despite a low overall detection efficiency.
منابع مشابه
Detecting genuine multipartite quantum nonlocality: a simple approach and generalization to arbitrary dimensions.
The structure of Bell-type inequalities detecting genuine multipartite nonlocality, and hence detecting genuine multipartite entanglement, is investigated. We first present a simple and intuitive approach to Svetlichny's original inequality, which provides a clear understanding of its structure and of its violation in quantum mechanics. Based on this approach, we then derive a family of Bell-ty...
متن کاملGeometric reduction of dynamical nonlocality in nanoscale quantum circuits
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefuncti...
متن کاملOrthogonality And Distinguishability: Criterion For Local Distinguishability of Arbitrary Orthogonal States
We consider deeply the relation between the orthogonality and the distinguishability of a set of arbitrary states (including multi-partite states). It is shown that if a set of arbitrary states can be distinguished by local operations and classical communication (LOCC), each of the states can be written as a linear combination of product vectors such that all product vectors of one of the state...
متن کاملMeasurement-induced nonlocality for an arbitrary bipartite state
Measurement-induced nonlocality is a measure of nonlocalty introduced by Luo and Fu [Phys. Rev. Lett 106, 120401 (2011)]. In this paper, we study the problem of evaluation of Measurement-induced nonlocality (MIN) for an arbitrary m×n dimensional bipartite density matrix ρ for the case where one of its reduced density matrix, ρ, is degenerate (the nondegenerate case was explained in the precedin...
متن کاملQuantum Nonlocality of Arbitrary Dimensional Bipartite States
We study the nonlocality of arbitrary dimensional bipartite quantum states. By computing the maximal violation of a set of multi-setting Bell inequalities, an analytical and computable lower bound has been derived for general two-qubit states. This bound gives the necessary condition that a two-qubit state admits no local hidden variable models. The lower bound is shown to be better than that f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 116 1 شماره
صفحات -
تاریخ انتشار 2016